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Abstract- Buoyancy effects are determined analytically for the laminar bounds-layer region above an 
isothermally heated, semi-infinite horizontal surface located in a horizontal uniform stream. The flow 
conditions are determined under which the boundary layer consists of a forced-flow-dominated near region 
and a buoyancy-dominated far region connected by an intermediate region in which forced and natural 
convection are of comparable magnitude. Perturbation expansions are obtained for the near and far regions 
with results for the intermediate region being obtained by graphical ~terpolation. 

Although it is well-known that, at fixed Reynolds and Grashof number, the effect of buoyancy decreases 
monotonically as the Prandtl number increases, it is found for the present problem that, for fixed U, and 
AT, the effect of natural convection in gases is not only more important than in large-u oils but also than in 
small-u liquid metals; this is attributable to the relatively small kinematic viscosity and coefficient of 
thermal expansion of liquid metals. In any case, if AT 5 20°C then li, must be quite small (5 20 cm/s) if 
buoyancy effects are to become significant before turbulent transition occurs. 

Presentation of the theoretical results in terms of G/R* versus u leads to a clear demarcation of the forced- 
convection, mixed-convection and natural-convection heat-transfer regimes. 

I/‘,, 
4 
u, 
X, 

NOMENCLATURE Y> 

gravitational acceferation (directed 
along negative y-axis); 
local Grashof number = 

&VW - T,I x3/@; 
local Nusselt number z 

-(x/AT) @T/a),; 
average Nusselt number 

Greek 

2 
YI 
r, 
4 

vertical coordinate measured above 
plate. 

symbols 
= 0.33206: 
coefficient of thermal expansion; 
E G/R3 = gj?(T, - T,)vjb’3,; 
gamma function; 
= (/lx)+ = x/R+; 

z (l/A?+-CQy),d::; 

local Reynolds number = U,x/v = x/J_; 
temperature; 

6 BY ES x/G*; 
6 thy sz AT/( - dT/ay),; 

6*, displacement thickness = 

as, (1 - u/t’,)dy; 
f . 

magnitude of uniform stream (directed AT’, E T, - T,; 
along positive x-axis); s, = G/R+; 
ZE (v/x) G% = U,G+/R; E, ze R/G*; 
fluid velocity component in xdirection; E, = G”,‘(R& 
fluid velocity component in y-direction; E*, 3 Rb*/G* . , 
horizontal coordinate measured along z o+Y/; 
plate; SE oq; 
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6% 5% y/a; 
rl”? = Y/k 

;: 
e ayj; 
s v/U, (“viscous length”); 

v, kinematic viscosity; 
= a+q* 

i _&; 

Pt density of fluid: 
cr, Prandtl number: 

x3 E G/R+ z yR+; 

+, streamfunction; 
0, E@cr-Q. 

Subscripts 
B, buoyancy-induced; 
F, for~d-how-induced; 
W, value at wall ; 
CQ, value of undisturbed fluid. 

1. I~RODU~ION 

A TIXORBTICM. investigation is made of the 
laminar boundary-layer region existing above 
an isothermally heated, semi-infinite horizontai 
plate located in a horizontal uniform stream. 
This is the analogue of the vertical-plate problem 
considered by Szewczyk [l] and Merkin [2]. 

The structure of the boundary fayer is charac- 
terized by the Prandtl number (c) and the mixed- 
convection parameter, y z GjR3 = gjIATv/Cii. 
In particular, it is shown that the buoyant 
effect is dominant throughout the boundary 
layer unless y is sufficiently small, namely, 
y < 1 when d = O(l), y < O(o)) as Q -+ co and 
y < O(U) as 0 --f 0. If y satisfies this condition 
then the boundary layer consists of a forced- 
flow-dominated near region and a buoyancy- 
dominated far region which are connected by 
an intermediate region in which both effects are 
comparable. 

The above “near region” was investigated by 
Mot-i [3] and Sparrow and Minkowycz [4] for 
particular values of 0. The “far region” has not 
been studied previously although the leading 
problem in this region is that of pure natural 
convection, which was investigated by Stewart- 
son [S] and Gill et al. [6] for particular values 

of tr, and by Rotem and Claassen [7] for d -+ co 
and cr + 0. 

In sections 2-4, a detailed analysis is made 
for the cases o = O(l), rr -+ co and o + 0, 
respectively, with primary attention being given 
to when y satisfies the above condition, this 
being the least trivial and most interesting 
situation. The results of sections 2-4 are dis- 
cussed and appfied in section 5. 

2. PRANDTL NUMBER OF O(l) 

Assuming the forced flow to be dominant in 
some region of the boundary layer (the required 
flow conditions to be determined aposteriori), 
then, as was shown by Mori [3] and Sparrow 
and Minkowy~ [4], appropriate expansions 
for the stream function and temperature in this 
region are given by: 

T - T, = ATmE emH,,,(r];o), 1 

where the governing equations and boundary 
conditions for the various terms are given by: 

Fb” + $F,F;; = 0; F,(O) = 0 = Fb(0), 

F;(a) = 1, (2) 

Hb’ + $rF& = 0; H,(O) = 1, 

H,(co) = 0, (3) 

1 

= -;T H,_,dq -+jH,-1 + Q,, (4) 
tl 

F,(O) = 0 = F,(O) = Fmfca), (ma 1) 

m+l 
+ --+&F, = S,, (5) 

H,,,(O) = 0 = H,,,(m), (m 3 1) 1 
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where 

QL = 0 = S,, Qz = @“,F; - F,F;‘, 

s, = +F;H, - F,H;, 

Q3 = $F;F; - F,F; - $F’;F,, 

s, = F;H, - F,H; + *F;H, - $F,H;, . .., 

and u = a+/ay,v = -a+fax. 
The above equations are based upon the 

usual Boussinesq approximation together with 
the assumptions of constant transport properties 
and negligible viscous dissipation. F, is the 
well-known Blasius stream-function and H,, is the 
associated forced-flow temperature. The higher- 
order velocity components are due to buoyancy 
via the first two terms on the right hand side 
of (4); these latter terms represent a favorable 
horizontal pressure gradient which arises from 
a hydrostatic force balance in the vertical 
direction combined with an x-dependent tem- 
perature (hence, density) distribution. 

In order that the above expansion be self- 
consistent, it is necessary that the boundary 
layer be thin, i.e. 6 4 x, and that the buoyancy 
effect be small, i.e. c 4 1. The first constraint can 
be rewritten as 1 < (x/A)* and, the latter, as 
(x/A)* $ y-l. Hence, in order that such a region 
exist, it is necessary that 1 & y-l. 

Therefore, if y G 1, the expansions in (1) are 
applicable in the region O(1) < x/A < O(y-*), 
with the buoyancy becoming a leading-order 
effect where x/A = O(,l-*), and, by implication, 
the dominant effect where x/A > O(y-*). 

Similarly, a formal perturbation eipansion 
about the natural-convection flow results in: 

T-T,=AT 5 Emfi,,,(ij;a), I 

with the governing equations and boundary 
conditions for the various terms being given by: 

3-m 

+ 5 
---&Fm = s,, (m > 1) 

F,(O) = 0 = &(O) = E?,(O) = R”(co), 

P&o) = 61, 

where 

&, = 0 = s,, & = +,F;‘, 

3, = - $F”;A, -j&R;, 

Q, = - $F”;F”; - $j?‘,F”; _ fj?,F;, 

l (8) 

3, = - +(F,E?,)’ - +(P,E?,)‘. 

That is, F0 and fl, correspond to the natural- 
convection problem considered by Stewartson 
[5], Gill et al. [6] and Rotem and Claassen [7], 
whereas the higher-order terms arise from the 
forced flow via the uniform-stream boundary 
condition, F”;(W) = 1. 

In order that the expansion in (6) be self- 
consistent, it is necessary that the boundary layer 
be thin, i.e. 6, < x, and that the forced-flow 
effect be small, i.e. E $ 1. The first constraint 
can be rewritten as y-* << (x/A)* and, the latter, 
as y-* 4 (x/A)+. 

If y < 1, the second constraint is the more 
restrictive. It follows that, for the case y < 1, (6) 
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is applicable to the region 0(ye2) < x//z, as 
expected. 

If y = O(l), expansion (1) is not applicable to 
any region of the flow whereas expansion (6) 
applies where O(1) < x/n. That is, the buoyancy 
effect becomes dominant during the early 
development of the boundary layer and remains 
dominant throughout the boundary-layer region. 

Lastly, if y > O(1) then (1) is again nowhere- 
applicable whereas (6) applies where yWf 4 (x/J)“, 
i.e. O(y-*) -C x//l. Hence, the more restrictive 
constraint on (6) in this case concerns “6e < x” 
rather than “6 +$ l”, implying that natural 
convection becomes dominant well before the 
bounda~ layer develops, the forced flow re- 
maining a small effect throughout the boundary- 
layer region. 

It is seen that, unless y is sufficiently small, the 
mixed-convection phenomenon is degenerate 
in the boundary-layer region. Hence, unless 
stated otherwise, the remainder of the present 
analysis is directed towards the case in which a 
forced-flow-dominated boundary-layer region 
exists. 

Numerical results at 0 = 072 for the first 
three terms in each of expansions (1) and (6) are 
as follows: 

F;(O) = 0.33206, F;‘(O) = l-6971, 

F;‘(O) = -4.9985, 

E&(O) = -0.29564, H;(O) = -0.35574, 

i 

(9) 

H;(O) = 1.5858, 

p;(O) = 0.97840, p;(o) = 0~4271, 7 
E;,(O) = 0.15048, 

B;(o) = -0.35741, r”i;(O) = -0*036910, 
(10) 

r?;(O) = -0.019857, I 
where the first two terms in (1) and the first term 
in (6) have been obtained previously. 

Additional terms in (1) could be obtained in a 
straightforward but tedious manner. However, 
in obtaining additional terms in (6), a complica- 
tion would arise at w1 = 5 due to the fact that the 
fifth-order homogeneous problem, equation (8) 

with m = 5 and & sz 0 s s,, has a non-trivial 
solution, namely, any multiple of 

Hence, following Stewartson [8], it would be 
necessary to introduce a term of order E5 log I in 
expansion (6) and, in order to eliminate the 
indeterminacy (i.e. the arbitrary multiple of 
F,, A,c) in the 0(E5) term, it would be necessary 
to integrate the full parabolic boundary-layer 
equations, starting from the near region. This 
procedure was followed by Merkin [2] in 
analyzing the vertical-plate case, for which the 
indeterminancy arises at m = 2. For the present 
case, accurate results may be obtained by an 
alternative procedure, as is shown shortly. 

Based upon the preceding, the local Nusselt 
number for when D = 0.72 and y 4 1 is given by: 

r 
0.29564 + 0.35574~ - 1.5858~’ 

N 

i 

+ (xX3):, Y 4 x e 1, 
R,= 0.35741313 $0.036910 x-+ 

(11) 

1 + 0.019857x-+ + 0(x-j), 16x 

where x E G/R* = yR3. The 0(x- ‘) term in the 
second equation of (11) has been omitted since 
i?;(O) = 0, as can be seen by noting that the 
third-order energy equation in (8) is an exact 
differential which, upon integration once and 
application of the thermal boundary condition 
at $ = co, results in 

(l/o)& = -@()r7, - +iQ?, - ff;“2tlt, 

giving the above result since F”,(O) = 0 (n > 0). 
On the other hand, calculation of the total 

heat-transfer rate (per unit depth) from the 
surface extending between the leading edge and 
the local value of x results in: 

= 2kATy-’ jp(t)dt (12) 
0 

where the asymptotic behavior of p(x) for small 
and large x is given by the right-hand side of (11). 
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Clearly, in order to evaluate the integral in (12), 
it is necessary also to know the behavior of p(x) 
for when x = O(1) which, in turn, requires 
employing a finite-difference procedure such as 
that used by Merkin. Fortunately, as is shown 

below, the value of Tp(x) dX can be determined 

from global energy ionsiderations; in combina- 
tion with the asymptotic behavior of ph) for 
small and large x, it is then possible, via graphical 
means, to get a fairly good approximation to 

P(X) for au x. 
Employing a global energy-rate balance, it is 

clear that the result for 0 as obtained from (12) 
must equal the total thermal convection, 

PC, j u(T - T,)dy. 
B.L. 

In particular, if x 9 1, the latter integral can be 
evaluated directly from the Fh and E?,, resulting 
in: 

Q = k AT ye’o[a,X% + a,~+ + a,X* 

+ a3 + 0(x-*)], 

1 (13) 
a, = 7 ( F pkl?,-,) d@, m = 0, 1,2,3. 

J 0 k=O 

For (r = 0.72, evaluation 
in: 

of the integrals results 

a, = 0.82734, a, = 0.12816, 

a2 = 0.13790, a3 = 03165. 

It is noted that, to within the numerical accuracy, 
a, = - [5/((3 - n)(0.72))]&(0),n = 0,1,2.Intro- 
ducing q(X)=p(X)-(0*35741~*+0~036910~-*+ 
0*019857~-~) and equating (12) and (13) results 
in: 

1 q(t) dt = i(O.72) a3 + 0(x-f) as x+co. 

.8 - 

.7 - 

.6 - 

P(X) 

.5 - 

2 I I I 
10-2 10-l 1 10 1’ 

x E y(x/X)“2 

FIG. 1. Variation of p(x) with x for Q = 0.72. Based upon 
equations (11) and (14). 

2 
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Hence, 

cc 

d qk) dX = 0.1139. (14) 

The above results are displayed in Fig. 1, in 
which are shown zeroth-, first- and second-order 
approximations to p(x) in the near and far 
regions. Making use of these curves, together 
with (14) and the asymptotic behavior, 
q(x) = O(;c-#) as x --f co, p(x) has been drawn in 
for any x (dashed curve). 

From the above it follows that, in the far 
region, the average Nusselt number between the 
leading edge and the local value of x is given by 

R 
s = 059568X* + 0.~228~-~ + 0*09929x-+ 

+ 0.2278x- ’ + 0(x- *) (15) 

for when (7 = 0.72. It is noted that the 0(x- ‘) term 
in (15) does not arise from a local heat transfer 
in the far region but, rather, represents the 
integrated heat-transfer rate of the x < O(1) 
region. Indeed, had the 0(x- ‘) term in the far- 
region expansion of (11) been non-zero, it would 
have led to a term of 0(x-’ log x) in (15). What 
is particularly interesting is the fact that the far- 
region expansion explicitly contains the net 
heat-transfer effect of the near region. This 
circumstance is analogous to the forced-flow 
velocity boundary layer for which Imai [9] 
showed, via global momentum considerations, 
that the drag of the “leading-edge region”, 
x,/A < O(l), is expIicitly contained within the 
bounda~-layer expansion. 

Concerning the effect of the leading-edge 
region upon the heat transfer in the present 
problem, it is noted that the near-region expan- 
sion of (11) does not apply where x d O(y), 
i.e. in the leading-edge region where the bound- 
ary-layer approximation is not valid. However, 
an order-of-magnitude analysis shows that the 
cont~bution to 0 by the region x/A < O(1) is, 
at most, of order kAT, which, from (13), is seen 
to be O(y) smaller than the heat-transfer rate 
from the near-region boundary layer. 

If y 2 O(1) then the upper equation in (11) is 
vacuous and the lower equation is applicable 
throughout the boundary-layer region, i.e. where 
O(y-*) < x/X In this case, higher-order bound- 
ary-layer effects, appearing as powers of 
6,/x = G-*, should be included in equation (6). 
This is clear on a physical basis since, as y -+ co 
(interpreted as U, -+ 0, say), the forced-flow 
effect in (6) must vanish uniformly whereas the 
higher-order boundary-layer effects remain non- 
negligible in the early-development stage of the 
boundary layer. This matter will not be pursued 
further, however, since the present concern is 
with the mixed-convection phenomenon. 

3. LARGEa 

The analysis of the large- and smalla limits 
in the present and succeeding sections is con- 
fined to the first two terms in each of the near 
and far regions. Since the limiting behavior of 
the predominant term has been obtained pre- 
viously, the present analysis is concerned witn 
the first-order perturbation term. 

In examining the flow for large-cr fluids, it is 
noted that the well-known limit of H, is: 

5 fixed as tr -+ co (16) 

0, r~ fured as c -+ co 

where c E a%,~, c1 = F:(O) = 0.33206 and I 
denotes the gamma function. Hence, the favor- 
able horizontal pressure gradient on the right 
hand side of (4) is confined to the thin thermal 
boundary layer corresponding to r] = O(a-+). 
In this inner layer, the streamfunction of the 
buoyancy-induct velocity field is given by: 

F,(~;a)wa~@~(5), <fixedaso+co (17) 

where 

(18) 

Q,(O) = o = Q;(O) = q(a). J 
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0 Jtj) being the inner temperature distribution of 
(16). That is, the horizontal momentum balance 
in the inner layer is between the viscous diffusion 
and the buoyancy-induced pressure gradient, 
the inertial effect being O(o- ‘) smaller. Based on 
(17), it is noted that ug = O(cU,/a). 

A closed-form solution for Q1 is given by 

x 1 eeat5/r2 dt - 51 tei’3~12d~~, (19) 

0 0 

which results in 

Q;‘(O) = w&+, 
3 

Q(5) I{- 32 23 1 - 
<-‘OX a ( > 9u4 f-c;)’ 

(20) 

Hence, at the outer edge of the inner layer, ug 
approaches the constant value sU,/(aa), thereby 
necessitating an outer layer. In the latter, we 
have : 
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layer but, rather, as is seen by integrating (22), 

i.e. the inertia associated with U, in the outer 
layer is supplied by the x-momentum (Cr, per 
unit mass) of the influx at its outer edge. 

In a similar manner, one finds that 

1 

0 -*Or(~), c fixed as d + co, 
H,(r;o) - 

0, g fixed as 0 + co, 
(23) 

where 

0, being driven by the inhomogeneous right- 
hand side which represents the thermal convec- 
tion of the forced-flow temperature by the 
buoyancy-induced velocity. 

The solution to (24) is expressible in closed- 
form as: 

0 

F,(q; a) - ~r-‘4~(q), q fixed as c -+ co, (21) cc 

where : - h,(t) h,@, dt 3 
s I 

(25) 

4;” + +F,&’ - $Fb 4 ; + Fb’& = 0 
5 

&(Dc)) = 0 = 4,(O), &(O) = a-‘. ’ 
(22) where c = (h,(O)/h,(O)) 7 h,@, d5 and h,, h, are 

That is, the horizontal momentum balance in linearly independent himogeneous integrals of 

the outer layer is between viscous and inertial (24) such that, as 5 + co, 

effects, the flow being driven by the inner layer 
as evidenced by the inhomogeneous matching 

h,(t) u g2, h,(t) N t-4e-“5’/12. 

condition in (22). In particular, 

As may be verified readily, the solution to (22) 
is simply (9u/4)+ O” 

&(rl) = a-2Fb(?). 
O;(O) = - T(i) h*(O) 

s 
h,d+ d< = -0.59649. 

0 

Hence, in particular, &‘(O) = c~-~F;‘(O) = 0, (26) 

which indicates that the momentum in the outer In the far region, as was shown by Rotem and 
layer is not due to viscous shearing by the inner Claassen [7], R, is zero except for a thin thermal 
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boundary layer corresponding to 8 = O(a-*) inhomogeneous matching condition in (30), 
wherein the x-momentum balance for p,, is indicating that the flow in the inner layer is 
between viscous diffusion and a buoyancy- dragged by the outer layer via viscous shear. 
induced favorable pressure gradient; in the outer Previously-obtains numerical solutions 
boundary layer, corresponding to @ = O(a<n), (slightly corrected) by Rotem and Claassen show 
the viscous and inertial effects balance and the that 
pressure gradient is zero. 

Appropriate asymptotic expansions for (6) 
@j(O) = 097534, &b(O) = -0*4%X9, 

are given in the inner layer by: &i(K) - 1.1488~ - 1.0392, 
K-+CC 

I 

(31) 

$ ,- U,G,&[S”(rc) 
&co) = 1.5043, 

f CcrMI(K) + . ..-J. 
whereas numerical integration of (29) and (30) 

rc fixed results in : 

T - T, -c AT&,(K) 

j 

aso-+oo (27) 
d&(4 - o - 2.2807, &r’(O) = 0.32672, 

+&G&(K) -+ . ..J. 
w+co 

(a:(O) = O-16484, e;(O) = -0*042408. 1 
(32) 

and, in the outer layer, by: In summary, the above results for large (T 

* N U&,a- +S [&(I$ 

i 

indicate that, in the near region, u, is O(aU,/a) 

w fned 
in both layers whereas u, is O(U,) in the outer 

+ ~~~~*(~~ + . . -1, 
as Q 3 co(2s) 

layer but O(U,/cf) in the inner, wherein 
U, -v 0.33206 U,q = 0.33206 U,&@. There- 

T - T, v 0. fore, the above perturbation expansion about the 
forced flow breaks down first in the inner layer, 

Hence, tiB = O(a-“U,) in both layers whereas occurring in the region where ci~‘,/o=O(U,/o*), 
U, is O(Li,) in the outer layer (as it must, in order i.e. x/J = 0(a4/y2). Hence, as (r -+ co, the near 
to match the uniform stream at the outer edge) region (characterized by a forced-flow boundary- 
and O(cr-*U,) in the inner layer. 

Rotem and Claassen determined &,, &,, and 
layer structure) corresponds to where 

&, whereas it is a simple matter to show that $r O(1) < x < O(&y2). (33) 
is governed by 

)! 

$,;f + &J,& - $j$$; + $j&& = 0, 

} 

Clearly, in order that there be such a region, it is 

(a;(~) = 1, &(O) = 0 = &CO), 
(29) 

necessary that y < O(& 
On the other hand, the far-region perturba- 

with 6, and &I being determinable from: 
tion expansion about the natural-convection 
flow indicates that u, is O(G,/a*) in both layers 

&‘;I= -+y&drc - $&r, 
of this region whereas U, is O(Cr,) in the outer 
and O(U&*) in the inner. Hence, in order that 

& + $&,& + @$$ + @)b&, =2 0, (30) 
uF .=z O(u,) in both layers of the far-region 
boundary layer, it is necessary that U?, < 0( ~‘B/u’), 

S,(O) = 0 = @r(O) = O,(O) = @l(co), 

I 

i.e. 0(cr3/yz) < x/L Therefore, as cr + co, the far 

@i(O) = 4;‘(O). 
region (characterized by a hatural-convection 
boundary-layer structure) occurs where 

It is noted that 4, arises from the inhomogeneous 
matching condition in (29), representing the (34) 
requirement that u - U, at the outer edge of 
boundary layer; in turn, s1 arises from the Of course, in order that the boundary-layer 



MIXED CONVECTION ABOVE A HEATED HORIZONTAL SURFACE 777 

approximation be valid, it is required also that 
&a & < O(x), i.e. G > O@). But, in the region 
corresponding to (34), G = Y(x/~)~ > O(oQ/$), 
which exceeds O(cr”) provided y < O@), a 
constraint which is seen to be less restrictive 
than that required for the existence of the near 
region. 

Hence, provided y < O(a*) as (T + co, the flow 
in the near region defined by (33) is a forced- 
flow-dominated boundary layer and, in the far 
region defined by (34), the flow is a buoyancy- 
dominated boundary layer. Apparently, then, 
in the “intermediate region”, where 

neither the forced flow nor buoyancy dominates. 
It can be shown, however, that throughout 

most of the intermediate region, namely, 

O(~)<~<O(~), (36) 

the outer layer is dominated by the forced flow 
(with a thickness of order x/R*) whereas the 
inner layer is dominated by buoyancy (with a 
thickness of order x,&G)*). In fact, appropriate 
perturbation expansions in the intermediate 
subregion defined by (36) are: 

ti N KO~C&(~) 1 

+ &*&I(K) + a..], I K fixed 

T - T, - AT[&&) asa+oo (38) 

+ 6*&&C) + . . *-J. 

The perturbation term in the outer layer, $r, is 
due to buoyancy and matches the leading-order 
term, &‘o, of the inner whereas & is associated 
with the forced flow and matches 6, of the inner. 
It is noted that % increases with X, becoming O(1) 
where x,0 = O(03/y2), whereas f decreases with 
x, being O(1) where x/L = 0(0*/y’); therefore, 

the perturbation expansion in the outer layer, 
(37X breaks down at the end of the intermediate 
subregion, (36), whereas that in the inner, (38), 
does not become valid until the start of the 
subregion. 

It may be verified that c%;&) is merely the 
Blasius stream-function, F,(q), and that &&c) 
and &e(rc) are the same as cir,(rc) and G&c), 
respectively, of the far region, On the other hand, 
the first-order perturbation terms are governed 
by: 
($;I! + f&d;;’ - $$b& + &&fj, = 0, 

&(,) = 0 = d,(O), 

~ 

(39) 

$;(O) = @b(a3) = 1.1488, 

c$;‘= -&+,d&&l, 
c 

4; + ;@&; $ &&@1 

= - &&)&, 

i 

(40) 

C@(O) = 0 = &i(O) = &$(co)=O,(O) 

@(co) = &(O) = 0.33206. 

Numerical integration results in: 

&co) = 3.4595, b;(O) = 020114, 
&i;(O) = -0.042476. (41) 

Based upon the results of this section, it 
follows that, in the limit y c O(cr*) as o -+ 00, 
the local Nusselt number is given by: 

0.33872 + 0.59649 

O(l)+0 $, 
0 

(Go)* 0.45619 + 0.042476 

N-1 x(-$7 +...I, (42) 

D 
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0.45619 + 0.042408 

x (q++...], 

0”” <;. 0 Y2 
It is noted that, as far as the heat transfer is 
concerned, natural convection is dominant 
already in the intermediate subregion. 

4. SMALLa 

As 0 + 0, the well-known limit of the forced- 
flow temperature is given by: 

(rr)-f 7 e-r2/4 dt, 
5 

5 fixed as g -P 0, (43) 

;, q fixed aso ‘0, 

where 5 = a*~ and, it is noted, the thermal 
convection is negligible in the velocity boundary 
layer, q = O(l), but is the same order as the 
thermal diffusion in the outer layer, of order 
S/a* in thickness, wherein the velocity is 
essentially that of the uniform stream. 

In a straightforward manner, the buoyancy- 
induced stream-function in the outer layer is 
expressible as 

F,(q;a) - a-i j-i(i), 5 fmed as a + 0 (44) 

where, denoting the outer temperature distribu- 
tion in (43) as h,(i), 

f;(m) = 0 =f1(0). J 

That is, viscous diffusion is negligible in the outer 
layer, the horizontal momentum balance being 
between the inertial effect and the buoyancy- 

induced pressure gradient. It is noted that U, 
is now O(sC’,/a*). 

The solution to (45) is expressible in closed- 
form as 

fl([) = 1 - erfc (c/2) + (rr)-+[ e-52’4 

- 31’ erfc (c/2). (46) 

Hence, in particular, f,(co) = 1 and f;(O) = 2/n*, 
the latter indicating the necessity for a viscous 
inner layer in order to satisfy the non-slip 
condition at the surface. 

An appropriate expansion for F, in the inner 
layer is 

F,(v; 4 - a -*S,(v), q fixed as a + 0, (47) 

where F1 is governed by: 

s;r’ + fF,%‘; - iFbY + Fb’%, 

= -th,d[, 
! 

(48) 

%1(O) = 0 = PI(O), 9;(a)) = f;(o). J 

The right-hand side of (48), arising from the 
buoyancy effect in the outer layer, represents a 
favorable pressure gradient which is imposed 
upon the inner layer. Numerical integration 
results in : 

9;‘(O) = 15285, 

9,(q) - $rj + 1.4677 as q + co. (49) 

Concerning the temperature field, it follows 
that, in the outer layer, 

H,(q; a) - amfhl(Q, [ fixed as a + 0, (50) 

where 

h;’ + +[h; - fh, = - hhfl, 

h,(m) = 0 = h,(O). > 
(51) 

A closed-form solution is given by: 
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1 - 5214 
+21tfe . (52) 

J 

Hence, in particular, h;(O) = -i. 
In the inner layer, an appropriate expansion 

is now 

H,(?; a) - Xi(q), q fixed as G + 0, (53) 

where 

.qytf) = 0, 

.Z,(O) = 0, .%;(co) = h;(O), I- (54) 

i.e. the thermal convection is negligible. It 
follows that 

.Z,(q) = - $11. (55) 

In the far region, as was shown by Rotem and 
Claassen [7], the natural-convection flow con- 
sists of an inviscid outer thermal boundary layer, 
corresponding to 9 = O(o-*), and a viscous 
inner layer, corresponding to fi = O(a A>), where- 
in thermal convection is negligible and the flow 
is driven by an imposed favorable pressure 
gradient arising from the buoyancy effect in the 
outer layer. 

Appropriate asymptotic expansions for (6) 
are given in the outer layer by: 

$ y WK2 [30(%) 
+ ~fK(%) + . . .I, t fixed 

T - T, v AT[h,(%) 

1 

ascr+O 

+ a*&(t) + . . .], 

and, in the inner layer, by: 

@ y Ii&o- -i’E [z&J<> 

+ afa9,(5”) + . . .], f fix& 

T - T, v ATC%,(t) 

I 

asa+ 

+ fJ& E.%,(S) + . . .]. 

(56) 

(57) 

Hence, in both layers, us = O(U&*) and 
z+ = O(U,). 

Rotem and Claassen determined fob, i;,,, & 
and -&,, whereas, concerning the first-order 
perturbation terms, the governing equations in 
the outer layer are 

h”;’ + y()h”; + g;h”, + gbf, = 0, 

31(O) = 0 = h,(O) = h”l(co), 3;(m) = 1, ! 

and, in the inner layer, 

j%;11+ ;@-& _ L$;$; + @V;;& 

I (59) 

9,(O) = 0 = 3qO) = SyO), 

&ym) = 3; (O), .Jq( co) = h”; (0). J 

Previously-obtained numerical solutions 
(slightly corrected) by Rotem and Claassen 
show that 

3&4 = 1.8009, 3;(o) = 1.5774, 

&(O) = -0.57574, p;(O) = 1.2309, (60) 

R,(q; (r) 5 1 - 0.575740*4” (t fixed as 1 
a+O). j 

whereas numerical integration of (58) and (59) 
gives : 

f,(e) .u c - 2,657 as % -+ co, 

3;(O) = -0.2045, h”;(O) = -0.07692, @‘) 

@i’(O) = -0.1790, .%(z) = -0.07692t. ‘r 
In summary, the above results for small 0 

show that, in both the inner and outer layers of 
the near region, U, is O(aU,/o*) and U, is 0( li,). 
Therefore, the above perturbation expansion 
about the forced flow breaks down where 
C//B* = O(l), i.e. x/l = O(a/y’). Also, in order 
that the boundary layer in the near region be 
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thin, it is necessary that x/(oR)* < O(x) i.e. dominated boundary layer. The intermediate 
x/L > O(a- ‘). Hence, as u -+ 0, the near region region therefore corresponds to x/1 = 0(a/y2). 
corresponds to where Based upon the results of this section, it 

OW) < ; < OWu2). 

follows that, in the iimit y < O(c) as 0 -+ 0, the 
(62) local Nusselt number is given by: 

A. 

Clearly, in order that such a region occur, it is 
required that y < O(cr). 

On the other hand, the perturbation expansion 
about the natural-convection flow indicates that, 
in both layers of the far region, U, is O(U@) N - 
and U, is O(U,). Hence, in order that ur < O&e), 
it is necessary that U, < O(U,/&, i.e. 
O(cr/y’) < x/J. Also, in order that the boundary 
layer in this region be thin, it is required that 
x/(Go2)* < O($or, cquiva~ent~y, x/J > O(Y-k- %). 

o(;) +o(;), 
(02G)* 

[ 
057574 + O-07692 

x(+J+...], O($<i. 

(64) 

FIG. 2. Variation of N/Rf vs. @ at 0 = 0.72 and various values of y 

It is seen that this latter constraint is less restrict- 
ive than the former since if y < O(Q) then 
0(0/y’) > O(y-+a-#). Hence, in the limit y < O(cr) 
as B -+ 0, the far region occurs where 

OWY2) < ;. (63) 

That is, provided y < O(c) as CT --f 0, the flow 
in the near region defined by (62) is a forced- 
flow-dominated boundary layer and, in the far 
region defined by (63), the flow is a buoyancy- 

5. DISCUSSION 

As an application of the heat-transfer results 
presented in section 2, Fig. 2 shows the variation 
in the local Nusselt number along the plate for 
rr = 0.72 and various values of y; the dashed 
curves are based upon the first two terms of the 
near- and far-region results in (1 l), whereas the 
solid curves are based upon the dashed curve 
for p(x) shown in Fig. 1. Figure 2 applies, e.g. to 
air at ~220°C for which y z 0.5 AT/U; if AT 
is in “C and U, in cm/s. Hence, if AT = 20°C 
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and li, = 20 cm/s then y M 10W3 and, based on 
Fig. 2, the buoyancy effect does not become 
significant until Rt z 103, a regime in which the 
assumption of laminar flow is somewhat un- 
tenable, turbulent transition occurring at R z lo6 
for the purely forced-flow situation. (The corres- 
ponding value for the mixed-convection problem 
is presumably smaller since the buoyancy gives 
rise to an inflection point in the velocity profile 
which, according to hydrodynamic stability 
theory, tends to lead to a less stable flow.) 

section 3, Fig 3 shows the variation of the local 
Nusselt number along the plate for 0 = lo3 
and various values of y. The dashed curves are 
based upon the results obtained for the near 
region, intermediate subregion and far region 
(equation 42), the solid curve being drawn in via 
graphical interpolation. This figure is applicable, 
e.g. to light oil at z 15°C for which 
y z 0.5 ATf U;. Hence, if AT = 20°C and 
U, = 10 cm/s then y z 10e2 and, based upon 
Fig. 3 (discounting the large viscosity variation 

IO- 

8- 

IO IO' IO3 I04 

FIG. 3. Variation of N/I@ vs. fi at c~ = 1000 and various values of y. Based on equation (42). 

However, halving U, to 10 cm/s results in 
y x 10e2 and, according to Fig. 2, the natural 
convection now becomes important where 
R* rz 102, i.e. during the early development of the 
laminar boundary layer. This clearly demon- 
strates that decreasing U, while keeping all 
other quantities fixed causes the buoyancy- 
dominated region to move rapidly forward 
towards the leading edge, the value of R in the 
intermediate region being, in fact, proportional 
to UZ. 

Based upon the large-a results obtained in 

which would attend such a AT), the buoyancy 
effect does not become important until Rt x 104, 
indicating that turbulent-transition of the forced- 
flow boundary layer would occur before the 
natural convection became significant. Com- 
parison with the above results in air clearly 
indicates that, for given AT and U,, the effect 
of buoyancy is much larger in air than in light 
oil or, more generally, in gases than in large-o 
liquids. 

As an application of the small-a results 
obtained in section 4, Fig 4 shows the variation 
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in the local Nusselt number along the plate for at a fmed R and G, the effect of buoyancy 
Q = lo-’ and various values of y. The dashed decreases monotonically as cr increases. 
curves are based upon the results obtained for The latter property is a fundamental character- 
the near and far regions (equation 64), the solid istic of mixed convection and is due to the fact 
curves being drawn in via graphical interpola- that the temperature field contracts as 0 increases 
tion. This figure is applicable, e.g. to liquid (thereby reducing the region over which the 
sodium at E 100°C for which y z 0.002 AT/U:. buoyancy acts). This characteristic was noted 
Hence, if AT = 20°C and U, = 10 cm/s then by Sparrow and Minkowycz [4] in their 
y z 4 x 10e5 and, based upon Fig. 4, the numerical calculations for the near I .egion and 

.I4 

.I2 

.I0 

.08 

N 
R l/2 

.06 

04 

.02 

0 

I- 

I- 

IO IOC IOJ 10. I’ 

R112 I (,,;x)1/2 

FIG. 4. Variation of N/e vs. F? at D = 0.01 and various values of y. Based on equation (64). 

buoyancy effect does not become important can be seen most readily from the present 
until R3 z 3000, indicating that turbulent transi- analysis by noting that the buoyancy-induced 
tion of the forced-flow boundary layer would velocity in the near region is of order sU,t~-r 
occur before the natural convection became as CJ + cc but of order eLi,o-* as 0 + 0. 
significant. Comparison with the above results Alternatively, this o-dependence is shown in 
in air indicates that, for given AT and U,, the Fig. 5 in terms of the heat-transfer results 
effect of buoyancy is much larger in air than in obtained in sections 2-4. The “forced-convection 
liquid sodium or, more generally, in gases than regime” (“natural-convection regime”) is that 
in liquid metals. This result, which can be in which the local heat transfer due to the forced 
attributed to the relatively small kinematic flow (buoyancy) is at least ten times as large as 
viscosity and coefficient of thermal expansion of that due to the buoyancy (forced flow). Con- 
liquid metals, is somewhat unexpected since, cerning the upper bound of the forced-convec- 
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tion regime, it is seen that the results of Sparrow 
and Minkowycz merge well with the large- and 
small-e results of the present paper. The lower 
bound of the natural-convection regime has 
been sketched in on the basis of the large- and 
small-a asymptotes of sections 3 and 4, together 
with the particular result at IJ = 0.72 obtained 
in section 2. 

In applying Fig. 5 to particular instances, it is 
cautioned that the indicated constraint on y be 
checked in order to assure that a forced-flow- 
dominated boundary-layer region is indeed 
present. Specifically, since 6,,, characterizes the 
thickness of the boundary layer when cr < O(l), 

until Rf 2 177; therefore, since yR* M 0.017 
at CJ = 0.01 on the lower curve of Fig. 5, it 
follows that it is necessary that y 5 0*017/177 x 
10m4 in order that there exist a forced-flow- 
dominated boundary-layer region when 0 = 0.01. 
(This indicates that the lower asymptotic be- 
havior of the y = 10e3 curve in Fig 4 is question- 
able.) Similarly, at CJ = 0.72 it is necessary that 
y 5 0902. For large o, since the thickness of the 
boundary layer is not characterized by bth but 
rather by the displacement thickness, 6*, it is 
required that 6*/x 5 0.1, say. Application of 
this to the forced-flow boundary layer 
(6* E 1.72 x/R*) indicates that, as cr + CD, the 

IO 

NATURAL -CONVECTION 
REGIME 

FORCED-CONVECTION 
REGIME 

FIG. 5. The forced-convection and natural-convection heat- 
transfer regimes in terms of yRf and 0. Numerical solutions: 
“c>“, Sparrow and Minkowycz [4] ; “D, section 2; large-u 

limit, section 3; small-a limit, section 4. 

for this case a simple requirement for the existence two-layer structure does not develop until 
of a boundary layer is that 6,Jx 5 0.1, say. R* 2 17.2. Hence, noting that yR3 z 1.3 at 
Applying this to be forced-flow boundary layer 
gives Rt X 17.70 cr-* as 0 --, 0 and R* k 33.8 

0 = ld on the lower curve in Fig. 5, it follows 

when 0 = 0.72. Hence, e.g. if r~ = 0.01 then a 
that it is necessary that y 5 l-3/17*2 x 0.1 in 
order that there exist a forced-flow-dominated 

forced-flow boundary layer does not develop boundary-layer region when 0 = 100. 
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CONVECTIONMIXTE AUDESSUSD'UNESURFACECHAUFF~EHORIZONTALE 
ReSum&-Des effets d’Archim&le sont determines anaIytiquement pour la region de la couche limite 
laminaire au-dessus dune surface horizontale semi-inlinie chauff&e isothermiquement et pla& dans un 
ecoulement uniforme horizontal. Gn a determine la conditions de l’ecoulement pour lesquelles la couche 
limite consiste en une region proche dominC par l’ecoulement for& et une region tloignee domink par 
l’effet d’Archimede, stpar&es par une region intern&bairn ou les convections for& et nature& sont 
d’importance comparable. On a obtenu les d~velop~men~ de la ~rturbation pour les regions proche 
et tloignee ainsi que des r&sultats, pour la region intermediaire, obtenus par interpolation graphique. 

Bien qua l’on sache que pour des nombres fix&s de Reynolds et de Grashof, l’effet d’Archim&le dtcroit 
de faGon monotone quand le nombre de Prandtl augmente, on a trouve dans le present probleme que pour 
U, et AT fixes, l’effet de convection naturelle est plus important dans lea gax que dans lea huiles a grand 
D ainsi que dans les mttaux Iiquides a petit o; ceci est dii a la viscositi cinematique re~tivement petite et 
au coefficient de dilatation thermique des metaux liquides. En tout cas, si AT C ZO”C, U, doit alors 
&re tout a fait petit (< 20 cm/s) si les effets d’Archime& doivent devenir signiticatifs avant qua ne se pro- 
duise la transition turbulente. 

La presentation des resultats thtoriques, G/R5” en fonction de c, conduit a une demarcation Claire 
entm lea regimes de transfert thermiq~ par convection for&e, par convection mixte et par convection 

naturelle. 

MI~~HKON~EKTI~NUBEREINERBEHEIZTENH~RIZ~NTALEN~BERFL~~CHE 

~~~a~g-Auftriebseffekte wurden analytisch bestimmt fib den laminaren Gr~~chicht~reich 
ilber einer isotherm beheirten halb~endlich~ horizontalen Oberfhiche, die in einer horizontalen gleich- 
mbsigen Striimung liegt. 

Die Strijmungsbedingungen wurden bestimmt, ftlr welche die Grenzschicht in einen wandnahen 
erzwungenen Konvektionsbereich und einen entfemteren freien Konvektionsbereich eingeteilt werden 
kann; daxwischen liegt ein Gebiet, in dem erzwungene und nattirliche Konvektion von vergleichbarer 
G&e sind. St~~ngsexpansionen erh&lt man t%r die nahen und fernen Gebiete mit den Ergebnissen fib 
das dazwischenliegende Gebiet durch graphische interpolation, Obwohl bekannt ist, dass bei festen 
Re- und Gr-Zahlen der Auftriebseffekt in gleichem Masse abnimmt wie die Prandtl-Zahl ansteigt, wurde 
Blr das vorliegende problem gefunden, dass fur feste U, und AT der Einfluss der natiirlichen Konvektion 
in Gasen nicht nur bedeutender als in Glen mit groDem Pr ist, sondem such in Fliissigkeiten mit kieinem Pr. 
Das ist zu~c~uf~hr~ auf die relativ kleine kinematische Z5higkeit und die therm&hen Au~ehnungs- 
koeffrzienten fliissiger Metalle. Fib AT ,$ ?O°C mu8 U, klein sein (5 20 cm/s), wenn Auftriebeseffekte 
bedeutend werden sollen, ehe turbulenter Uberschlag auftritt. Die Darstellung der theoretischen Ergeb- 
nisse in Gliedem von G/R5” gegen Pr fiihrt zu einer klaren Abgrenzung zwischen erzwungener, gemischter 

iind natiirlicher Konvektion. 
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SLfEIJIAHHAFI ICOHBEEC~IUI H&J HAl?PETOfl I’OPll30HTAJIbHOfl 
HOBEPXHOCTbIO 

AItaoTaqR~-AHanMT~lYeclrw paccYxTbIBanacb cma nna33yYecTrr 3 ObnacTn ~a~~Ha~Hor0 

nOrp3H~YH~rO CJlOfi H&Q ~3OTe~~~~Ye~K~ HWpeTOfi IlO~yOrpaH~YeHHO~ rOp~%OHTa~bHO~ 

IIOBepXHOCTbIO B rOp~3OHTa~bKOM OJ(HOpOAHOM IloToKe. OrIpegeJIRJCHcb yCJlOBiVi, IIpPf 

KOTOpbIX l'lOJ?paHHYHbIfi CslOti COCTOLlT $13 6nmHEHero yYaCTK3 C IIpeO6naAamqHM BbIHyW 

AeIIHbU,, IIOTOKOM c1 ,I@JIbHerO C ,L(OMHHI4pylOl.l@ CllJIOn IIJIaByYeCTM, MemAy KOTOpblMM 

H3XOJ(IlTCR IlpOMeltcyTOYHaR 3OHa,rAe BbIHyHcReHHaH II eCTeCTBeHH3R KOHBeKqEW CpaBHKMbI. 

no Teopm BO3MyIQeHHii IIonyyeHbI paano=eam AJIX Bnaxttnero R Aanbrxero yWCTKOB, 

~Ip~IYeM~e3yjIbT3Tbl~~~~~O~e~yTOYHOZt3OHbI~O~yYeHbI~yTeM~~~~~Ye~KO~BHTe~~O~R~IIM. 

XOTFi XOpOll.lO M3BeCTH0, YTO JIpEl ~KKC~pOBaHH~X 3HaYeHHRX YHCeJl Pe~HO~bACa II 

rpacrO@ 3#$eKT ~~3ByYeCT~~ MOHOTOHHO y~eHb~3eTC~ C yBe~~~eH~eM YE1CJIB npaHATJIR, 

YTO ,I&JIIJ AaHFlO& 3aAaYkl,TO eCTb JWE @HKCIfpOBaHHbIX 3HaYeHd u, MAT, RJIEIRHMi? WTeCT- 

BeHHOfi KOHBeKQMM 6onee 3HaYEITeJIbHO B ra3aX He TOJIbKO II0 CpaBHeHWO C MaCJRLMl4 IIpM 

6onblu~x3HaYeHMaXo,HOT3KHEeEICH(II~KOCTRM~Inp~ManblX3HaYeHAXXa.~TOO6a~CH~eTC~ 

CpaBHHTeJIbHO He6OJIbLIIMMH HMHeMaTRYeCKOti BFl3KOCTblO M KOEIJi@U@+eHTOM TeLIIOROrO 

pacmspeam IWIRKMX MeTann0B.B JIIO~OM cnyYae,ec.m AT 5 2o°C, BemYnHa U, gonwra 

ObITb COBCeY He6O~bl~O~, YTO6bI CHJlbl IUlaByYeCTIl CT3XE.i 3HaY~Te~bHblM~ 20 HaCTyn~eH~~ 

Typ6y~?i3a~~~~ IIOTOKB. 

TeopeTmecKHe pe3yJibTaTb1, npeA~T3~~eHH~e B BHAe 3aB~G~MO~T~C G/i?= OT 0, BeAyT 

K Yi%TKOMy ~)a3rpaHHYeHKiO PelKLlMOB TeFfJIOO6MeHa C BbIHylKReHHOfi, CMeIIIaHHO~ II 

eCTeCTBeHHOl% KOHBeKIJHei. 


