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Abstract— Buoyancy effects are determined analytically for the laminar boundary-layer region above an
isothermally heated, semi-infinite horizontal surface located in a horizontal uniform stream. The flow
conditions are determined under which the boundary layer consists of a forced-flow-dominated near region
and a buoyancy-dominated far region connected by an intermediate region in which forced and natural
convection are of comparable magnitude. Perturbation expansions are obtained for the near and far regions
with results for the intermediate region being obtained by graphical interpolation.

Although it is well-known that, at fixed Reynolds and Grashof number, the effect of buoyancy decreases

monotonically as the Prandtl number increases, it is found for the present problem that, for fixed U, and
AT, the effect of natural convection in gases is not only more important than in large-o oils but also than in
small-c liquid metals; this is attributable to the relatively small kinematic viscosity and coefficient of
thermal expansion of liquid metals. In any case, if AT < 20°C then U_ must be quite small { <20 cm/s) if
buoyancy effects are to become significant before turbulent transition occurs.

Presentation of the theoretical results in terms of G/R? versus ¢ leads to a clear demarcation of the forced-
convection, mixed-convection and natural-convection heat-transfer regimes.

NOMENCLATURE

gravitational acceleration (directed
along negative y-axis);
local Grashof number =
gﬁ(Tw - Toc) .XJ3/V2;
local Nusselt number =
—(x/AT)(0T/0),,;
average Nusselt number

= um)};(-a?vay)w x;

local Reynolds number=U _x/v=x/4;
temperature;

magnitude of uniform stream (directed
along positive x-axis);

= (v/x) G = U_G*¥R;

fluid velocity component in x-direction;
fluid velocity component in y-direction;
horizontal coordinate measured along
plate;

769

Y

vertical coordinate measured above
plate.

Greek symbols

o,

= 0-33206:
coefficient of thermal expansion;
= G/R® = gf(T, — T,)v/UL;
gamma function;
= (Ax)} = x/R?Y;
= x/G*;
= AT/(—0T/0y)w;
displacement thickness =
{ (1 —wU,)dy;

BlL.
=T, — Ty
= G/R¥;

= R/Gt;

= G*/(Ra?);
= Rist/G*;
= g¥n;

= o*fj;
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", = y/9;
f, = y/op;
K, = otfj;
A, = v/U_, (“viscous length”);
v, kmemat;c viscosity;
é’ = 0'1}7]1,
L o=oTti
o, density of fluid;
G, Prandtl number:
s = G/R? = yRY;
v, streamfunction;
w, =g "7
Subscripts
B, buoyancy-induced;
F, forced-flow-induced;

value at wall;
value of undisturbed fluid.

8 =

1. INTRODUCTION

A THEORETICAL investigation is made of the
laminar boundary-layer region existing above
an isothermally heated, semi-infinite horizontal
plate located in a horizontal uniform stream.
This is the analogue of the vertical-plate problem
considered by Szewczyk [1] and Merkin [2].

The structure of the boundary layer is charac-
terized by the Prandtl number (¢) and the mixed-
convection parameter, y = G/R* = gBATv/U3.
In particular, it is shown that the buoyant
effect is dominant throughout the boundary
layer unless y is sufficiently small, namely,
y €1 when ¢ = 0(1), y < 0(¢?) as 6 - oo and
y < 0(0) as ¢ — 0. If y satisfies this condition
then the boundary layer consists of a forced-
flow-dominated near region and a buoyancy-
dominated far region which are connected by
an intermediate region in which both effects are
comparable.

The above “near region” was investigated by
Mori [3] and Sparrow and Minkowycz [4] for
particular values of a. The “far region” has not
been studied previously although the leading
problem in this region is that of pure natural
convection, which was investigated by Stewart-
son [5] and Gill et al. [6] for particular values

of 6, and by Rotem and Claassen [7] for 0 — o
and ¢ — 0.

In sections 2-4, a detailed analysis is made
for the cases ¢ =0(1), 6 >0 and ¢ -0,
respectively, with primary attention being given
to when y satisfies the above condition, this
being the least trivial and most interesting
situation. The results of sections 24 are dis-
cussed and applied in section 5.

2. PRANDTL NUMBER OF 0(1)

Assuming the forced flow to be dominant in
some region of the boundary layer (the required
flow conditions to be determined aposteriori),
then, as was shown by Mori [3] and Sparrow
and Minkowycz [4], appropriate expansions
for the stream function and temperature in this
region are given by:

Y = U, 0[Foln) + Zx &"Fun:0)}, "
m= 1
T-~T,=AT i &"H, (n: o),
m=0

where the governing equations and boundary
conditions for the various terms are given by:

FU + LF F3 = 0; Fo0) = 0 = Fiy(0),
Fi(o)=1, ()
Hg + 20FoHy = 0 Hol0) = 1,
Ho(0)=0, (3

1
Fyi+ 4FoF — 2 FoFy + "2~ FiF,
m% .
= =S Hpydn —dnHpoy + Q. [ 4
n
F(0)=0=F,0) = F(c0), (m=>=1) J
1 L m D
ol 2 2 1F H' — _—F!
O_Hm+2FOm 2F0Hm
1
+m; H,F, =S,, [ (5
H,(0) = 0 = H,(c0), m=1) J
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where
Q1=0=Sp 2=%F’1F'1_F1F’1”
Sz = %F1H1 - FlHll’
Qs = 3F\F, — F\F; — 3FF,,
S; = F\H, — F\H}, + 3F,H, — F,H}, ...,

and u = oY /0y, v = —OY/Ox.

The above equations are based upon the
usual Boussinesq approximation together with
the assumptions of constant transport properties
and negligible viscous dissipation. F, is the
well-known Blasius stream-function and Hy is the
associated forced-flow temperature. The higher-
order velocity components are due to buoyancy
via the first two terms on the right hand side
of (4); these latter terms represent a favorable
horizontal pressure gradient which arises from
a hydrostatic force balance in the vertical
direction combined with an x-dependent tem-
perature (hence, density) distribution.

In order that the above expansion be self-
consistent, it is necessary that the boundary
layer be thin, ie. 6 < X, and that the buoyancy
effect be small, ie. ¢ < 1. The first constraint can
be rewritten as 1 < (x/A)} and, the latter, as
(x/A)* < 77! Hence, in order that such a region
exist, it is necessary that 1 < y~1,

Therefore, if y < 1, the expansions in (1) are
applicable in the region O(1) < x/A < O(y~?),
with the buoyancy becoming a leading-order
effect where x/4 = 0(y~2), and, by implication,
the dominant effect where x/A > 0(y~2).

Similarly, a formal perturbation expansion
about the natural-convection flow results in:

o«

Y = Updp Zo gmfm(ﬁ; o),

(6)
T —T,=AT Y &H,d;0),
m=0

with the governing equations and boundary
conditions for the various terms being given by:
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Fy + 3F Fy — 4F,F, )
= _%jﬁodﬁ _%ﬁg(b
"
1 N L (7)
;Hg + 3FH, =0,
Fy(0) = 0 = Fy(0) = Fi(c0) = H (o),
Hy0) =1,
-~ = -2 o o 3—mo ~
Fy +3FoFy + o= FoFy + = F4F,
m—2% . o
= 5 5 H"‘ dﬁ - %~Hm + Qm, W
n
1 - m -
__Hrr 3F Hr i~
. + 58 044m + 5 OHm
L (8)
3-m,, o
+—T— OFm_——Sm’ (m>1)
F(0) = 0 = F,,0) = A,(0) = A,(),
F:n(oo)=5lm
where
Ql=0=sl’ Q2= _%Flﬁlf,
Sz = _%~’1 ~1 _%F.lg,lﬁ
Q3= —%F,IFIZ—%FIF’Z,—‘%FZ 1
33 = - %(F1ﬁ2)' - %(Fzﬁl)/-

That is, F, and H, correspond to the natural-
convection problem considered by Stewartson
[5], Gill et al. [6] and Rotem and Claassen [7],
whereas the higher-order terms arise from the
forced flow via the uniform-stream boundary
condition, F(c0) = 1.

In order that the expansion in (6) be self-
consistent, it is necessary that the boundary layer
be thin, ie. 45 € x, and that the forced-flow
effect be small, 1.e. ¢ < 1. The first constraint
can be rewritten as y~* < (x/A)* and, the latter,
as y~ ¥ < (x/A)t

If y <1, the second constraint is the more
restrictive. It follows that, for the case y < 1, (6)
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is applicable to the region 0(y~2) < x/4, as
expected.

If y = 0(1), expansion (1) is not applicable to
any region of the flow whereas expansion (6)
applies where 0(1) < x/A. That is, the buoyancy
effect becomes dominant during the early
development of the boundary layer and remains
dominant throughout the boundary-layer region.

Lastly, if y > 0(1) then (1) is again nowhere-
applicable whereas (6) applies where y ¥ <(x/A)%,
ie. Oy~ ¥ < x/A. Hence, the more restrictive
constraint on (6) in this case concerns “dp < x”
rather than “£ < 1”, implying that natural
convection becomes dominant well before the
boundary layer develops, the forced flow re-
maining a small effect throughout the boundary-
layer region.

It is seen that, unless y is sufficiently small, the
mixed-convection phenomenon is degenerate
in the boundary-layer region. Hence, unless
stated otherwise, the remainder of the present
analysis is directed towards the case in which a
forced-flow-dominated boundary-layer region
exists.

Numerical results at ¢ = 0-72 for the first
three terms in each of expansions (1) and (6} are
as follows:

F3(0) = 033206, F{(0) = 1-6971,
F5(0) = —49985,
Hy(0) = —029564, H{(0) = —0-35574,
H(0) = 1-5858,
F0) = 097840, E(0) = 0044271,
f2(0) = 0-15048, 10)
H,(0) = —035741, H{(0) = —0:036910,
Hy(0) = —0019857,

where the first two terms in (1) and the first term
in (6) have been obtained previously.
Additional terms in (1) could be obtained in a
straightforward but tedious manner. However,
in obtaining additional terms in (6), a complica-
tion would arise at m = 5 due to the fact that the
fifth-order homogeneous problem, equation (8)
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with m = 5 and @5 = 0 = §,, has a non-trivial
solution, namely, any multiple of
Fscz’?ﬁ:)—%ﬁo: Esc“"’?gi)*
Hence, following Stewartson [8], it would be
necessary to introduce a term of order & log & in
expansion (6) and, in order to eliminate the
indeterminacy (i.e. the arbitrary multiple of
F ¢, A, in the 0(%) term, it would be necessary
to integrate the full parabolic boundary-layer
equations, starting from the near region. This
procedure was followed by Merkin [2] in
analyzing the vertical-plate case, for which the
indeterminancy arises at m = 2. For the present
case, accurate results may be obtained by an
alternative procedure, as is shown shortly.
Based upon the preceding, the local Nusselt
number for when ¢ = 0-72 and y < 1 is given by:

029564 + 0-35574y — 1-5858y2
+0(), y<yx<l,

N
— = (1
R 035741yt +0:036910 ~*

| +0019857; 7% + 0%, 1<y

where ¥ = G/R? = yR*. The O(x ™ !) term in the
second equation of {11) has been omitted since
H,(0) = 0, as can be seen by noting that the
third-order energy equation in (8) is an exact
differential which, upon integration once and
application of the thermal boundary condition
at #j = oo, results in
(1/o) Hy = —3F A,
giving the above result since F,(0) = 0).
On the other hand, calculation of the total
heat-transfer rate (per unit depth) from the

surface extending between the leading edge and
the local value of x results in:

0-fr(-%) a

X
= 2kATy~* { p(t)de
¢

—3F A, - $F,0,,
0(n2

(12)

where the asymptotic behavior of p(y) for small
and large y is given by the right-hand side of (11).
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Clearly, in order to evaluate the integral in (12),
it is necessary also to know the behavior of p(y)
for when y = 0(1) which, in turn, requires
employing a finite-difference procedure such as
that used by Merkin. Fortunately, as is shown

below, the value of j p(x) dy can be determined
0

from global energy considerations; in combina-
tion with the asymptotic behavior of p(y) for
small and large y, it is then possible, via graphical
means, to get a fairly good approximation to
p(x) for all y.

Employing a global energy-rate balance, it is
clear that the result for Q as obtained from (12)
must equal the total thermal convection,

pC, | u(T — T,)dy.
B.L.

In particular, if y > 1, the latter integral can be
evaluated directly from the F’ and H,, resulting
n:

Q = kATy 'olaort + a;xt + ayxt

+ as + O(X—%)],
o m 13)
(Y FH,_»df, m=0,123.
0

k=0

i

Am

For ¢ = 072, evaluation of the integrals results
mn:

a, = 082734, a, = 0-12816,

a, = 013790, a, = 0-3165.

It is noted that, to within the numerical accuracy,
a, = —[5/(3 — n{0-72))]H,(0),n = 0,1,2.Intro-
ducing q(x)=p(x) —(0-357413* + 0036910y~ * +
0-019857x~ %) and equating (12) and (13) results
in:

X
fq(t)dt =3(072)a; + 0(x™ % as x— oo
0

X Ey(x/n)"2

F1G. 1. Variation of p(y) with x for ¢ = 0-72. Based upon
equations (11) and (14).
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Hence,

{ a()dy = 0-1139. (14)
4]
The above results are displayed in Fig. 1, in
which are shown zeroth-, first- and second-order
approximations to p(y) in the near and far
regions. Making use of these curves, together
with (14) and the asymptotic behavior,
g(x) = O(x~*) as y — oo, p(x) has been drawn in
for any y (dashed curve).

From the above it follows that, in the far
region, the average Nusselt number between the
leading edge and the local value of x is given by

}% = 0-59568y% + 009228yt + 0:09929; %

+02278¢" ' + 0™ %) (15)
for when o = 0-72. It is noted that the O(y ™ ') term
in (15) does not arise from a local heat transfer
in the far region but, rather, represents the
integrated heat-transfer rate of the y < 0(1)
region. Indeed, had the O(x ') term in the far-
region expansion of (11) been non-zero, it would
have led to a term of O(x ™! log y) in (15). What
is particularly interesting is the fact that the far-
region expansion explicitly contains the net
heat-transfer effect of the near region. This
circumstance is analogous to the forced-flow
velocity boundary layer for which Imai [9]
showed, via global momentum considerations,
that the drag of the “leading-edge region”,
x/4 < 0(1), is explicitly contained within the
boundary-layer expansion.

Concerning the effect of the leading-edge
region upon the heat transfer in the present
problem, it is noted that the near-region expan-
sion of (11) does not apply where y < 0(y),
ie. in the leading-edge region where the bound-
ary-layer approximation is not valid. However,
an order-of-magnitude analysis shows that the
contribution to @ by the region x/A < 0(1) is,
at most, of order kAT, which, from (13), is seen
to be O(y) smaller than the heat-transfer rate
from the near-region boundary layer.
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If y > 0(1) then the upper equation in (11) is
vacuous and the lower equation is applicable
throughout the boundary-layer region, i.e. where
0(y ") < x/A. In this case, higher-order bound-
ary-layer effects, appearing as powers of
dg/x = G™*, should be included in equation (6).
This is clear on a physical basis since, as y — o
(interpreted as U_ — 0, say), the forced-flow
effect in (6) must vanish uniformly whereas the
higher-order boundary-layer effects remain non-
negligible in the early-development stage of the
boundary layer. This matter will not be pursued
further, however, since the present concem is
with the mixed-convection phenomenon.

3. LARGE ¢

The analysis of the large- and small-s limits
in the present and succeeding sections is con-
fined to the first two terms in each of the near
and far regions. Since the limiting behavior of
the predominant term has been obtained pre-
viously, the present analysis is concerned witi
the first-order perturbation term.

In examining the flow for large-o fluids, it is
noted that the well-known limit of H,, is:

(Oajd)t [

rG)
< 4

e—a!3f12 dt
»

Hyn: o)

Efixedaso — © (16)

0, nfixedas ¢ — 0

where & = 0%y, a = Fj0)=033206 and T
denotes the gamma function. Hence, the favor-
able horizontal pressure gradient on the right
hand side of (4) is confined to the thin thermal
boundary layer corresponding to 5 = O(¢™%).
In this inner layer, the streamfunction of the
buoyancy-induced velocity field is given by:

Fi(n:0) ~ a* &,(),

where

¢fixed as 6 —» 17)

] = —3[0,d¢~ O,
s

(18)
®4(0) = 0 = ®(0) = ?{(c0).
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O (&) being the inner temperature distribution of
(16). That is, the horizontal momentum balance
in the inner layer is between the viscous diffusion
and the buoyancy-induced pressure gradient,
the inertial effect being O(c~!) smaller. Based on
(17), it is noted that ug = O(zU /o).

A closed-form solution for @, is given by

o0}

4

(3/2)*

D) = T%)_{

63
3

X Jie‘“":“zdt —%Jate"'s“zdt}, (19)
0 0
which results in
e (12/a)?
240 = S5
1 2V 1r@
e ~ &= ==
1(6) P aé (9&4) F(%) (20)

Hence, at the outer edge of the inner layer, ug
approaches the constant value ¢U  /(ag), thereby
necessitating an outer layer. In the latter, we
have:

Fi(n;0) ~ 67 '¢4(n), nfixedaso— oo, (21)
where:
U 3Fodi - $Fodi + Fogy =, } o)

$1(0) =0 = ¢,(0), ¢1(0)=a"".
That is, the horizontal momentum balance in
the outer layer is between viscous and inertial
effects, the flow being driven by the inner layer
as evidenced by the inhomogeneous matching
condition in (22).

As may be verified readily, the solution to (22)
is simply

¢1(n) = o™ 2F5(n).

Hence, in particular, ¢;(0) = a~2Fy(0) =0,
which indicates that the momentum in the outer
layer is not due to viscous shearing by the inner

7175

layer but, rather, as is seen by integrating (22),
| Foo dn = $Fy(c0) $1(o0) = 3¢1(c0),
o

ie. the inertia associated with ug in the outer
layer is supplied by the x-momentum (U per
unit mass) of the influx at its outer edge.

In a similar manner, one finds that

67 %0,(¢), &fixedaso — oo,
Hi(n;0) ~ (23)
0, #nfixed aso — oo,
where
o o
@/1’ + 262@'1 - 5661 = —@6(1)1,
(24)

0,(0) = 0 = @y(c0),

@, being driven by the inhomogeneous right-
hand side which represents the thermal convec-
tion of the forced-flow temperature by the
buoyancy-induced velocity.

The solution to (24) is expressible in closed-
form as:

2/x)?
0 =~ 2 o) < - fh1¢, a]

- hl(é)f h, @, dé}, (25)
4

where ¢ = (h;(0)/h,(0)) | h,®, d¢ and h,, h, are
4]

linearly independent homogeneous integrals of
(24) such that, as £ —» oo,

hi(€) ~ &, hy(@) ~ & *e™=12,

In particular,

©a/ap |

0.0 =~ rg )

h,®, dé = —0-59649.

(26)

In the far region, as was shown by Rotem and
Claassen [7], A, is zero except for a thin thermal
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boundary layer corresponding to # = 0(c ™ %)
wherein the x-momentum balance for F, is
between viscous diffusion and a buoyancy-
induced favorable pressure gradient; in the outer
boundary layer, corresponding to # = O(c ),
the viscous and inertial effects balance and the
pressure gradient is zero.

Appropriate asymptotic expansions for (6)
are given in the inner layer by:

¥~ Uaéso'_%[‘io(@
+ o d,(x) + ...], K fixed
5 [ @7
T — T, ~AT[Ox) as o — o
+ 8066 (k) +...],
and, in the outer layer, by:
Y ~ Upbpo™ o [‘50(60)
N w fixed
+ic*d )+ ... ] (28)
as ¢ —
T-T,~0. J

Hence, ug = O(c"*Up) in both layers whereas
up is (U ,,) in the outer layer (as it must, in order
to match the uniform stream at the outer edge)
and O(c~*U ) in the inner layer.

Rotem and Claassen determined &,, @, and
$,,, whereas it is a simple matter to show that ¢,

is governed by
=0,
} (29)

B+ 2Bodt — 1dobL + 2,
Fi(0) =1, ,(0) =0 = $(0),
with &, and @, being determinable from:

L+ 38,0, + 36,8, =0,
&,(0) = 0 = 3,(0) = ©,(0) = ©,(c0),

&7(0) = ¢7(0).
It is noted that ¢, arises from the inhomogeneous
matching condition in (29), representing the

requirement that u ~ U, at the outer edge of
boundary layer; in turn, @, arises from the

(30)
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inhomogeneous matching condition in (30),
indicating that the flow in the inner layer is
dragged by the outer layer via viscous shear.

Previously-obtained numerical solutions
(slightly corrected) by Rotem and Claassen show
that

B;(0) = 097534, D,(0) = —0-45619,
$y(x) ~ 1-1488x — 1:0392,

-

G

Polo0) = 1-5043,

whereas numerical integration of (29) and (30)
results in:

$w) ~ o — 22807, $7(0) = 0~32672,} ”
&/(0) = 016484, ©,(0) = —0-042408.

In summary, the above results for large o
indicate that, in the near region, ug is 0(sU ,/06)
in both layers whereas u; is O(U ) in the outer
layer but O(U,/¢%) in the inner, wherein
up ~ 033206 U, n = 033206 U &/6*. There-
fore, the above perturbation expansion about the
forced flow breaks down first in the inner layer,
occurring in the region where ¢U _ /6 =0(U ,/o?),
ie. x/A = O0(c*/y?). Hence, as ¢ — oo, the near
region (characterized by a forced-flow boundary-
layer structure) corresponds to where

o) < ;ﬁ < 0(c?/y?). (33)
Clearly, in order that there be such a region, it is
necessary that y < 0(c?).

On the other hand, the far-region perturba-
tion expansion about the natural-convection
flow indicates that u, is O(Ug/o?) in both layers
of this region whereas u; is O(U ) in the outer
and O(U _/o?) in the inner. Hence, in order that
up < O(up) in both layers of the far-region
boundary layer, itisnecessary that U ,, <O(U 5/0%),
ie. 0(a®/y?) < x/A. Therefore, as ¢ — oo, the far
region (characterized by a hatural-convection
boundary-layer structure) occurs where

003 jy?) < % (34)

Of course, in order that the boundary-layer
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approximation be valid, it is required also that
650 % < 0(x), ie. G > O(c?). But, in the region
corresponding to (34), G = y(x/4)® > 0(c®/y*),
which exceeds 0O(¢?) provided y < O(c?), a
constraint which is seen to be less restrictive
than that required for the existence of the near
region.

Hence, provided y < 0(c?) as ¢ — oo, the flow
in the near region defined by (33) is a forced-
flow-dominated boundary layer and, in the far
region defined by (34), the flow is a buoyancy-
dominated boundary layer. Apparently, then,
in the “intermediate region”, where

at x a3
5 S by g NCE )
0(v2> A 0(?2)

neither the forced flow nor buoyancy dominates.
It can be shown, however, that throughout
most of the intermediate region, namely,

o o ¢°

the outer layer is dominated by the forced flow
(with a thickness of order x/R*) whereas the
inner layer is dominated by buoyancy (with a
thickness of order x/(¢G)!). In fact, appropriate
perturbation expansions in the intermediate
subregion defined by (36) are:

¥ ~ Uydldolm)

(35)

(36)

+ &) + -, az gm—id 0 7
T - Tco ~ 0
¥ ~ Upbpo™ *[B(x)
+ &*®,(x) + ... )| x fixed (38)

T — T, ~ AT[@x) as ¢ —

+e*0(x) +...]

The perturbation term in the outer layer, @, is
due to buoyancy and matches the leading-order
term, &, of the inner whereas ¢, is associated
with the forced flow and matches &, of the inner.
It is noted that £ increases with x, becoming 0(1)
where x/A = 0(c>/7%), whereas ¢* decreases with
x, being 0(1) where x/A = O(c*/y?); therefore,

D

m

the perturbation expansion in the outer layer,
(37), breaks down at the end of the intermediate
subregion, (36), whereas that in the inner, (38),
does not become valid until the start of the
subregion.

It may be verified that @o(n) is merely the
Blasius stream-function, Fo(n), and that &(x)
and @,(x) are the same as $y(x) and Ox),
respectively, of the far region. On the other hand,
the first-order perturbation terms are governed

by:
?+%M—%M+%%lﬂx1
(39)

$1(0) = 0 = $,(0),

$1(0) = Fp(c0) = 1-1488, J
:
oo
& = — 15[ O,dc — 0,
07 + 38,0, + 759,06,
~ = >
= — 150,48, (40)
6(0) = 0 = 8,(0) = 6,(0)=6,(0)
&(0) = d5(0) = 0-33206. ]
Numerical integration results in:
$,(c0) = 34595, 7(0) = 020114,
0'(0) = —0:042476.  (41)

Based upon the results of this section, it
follows that, in the limit y < O{¢*) as ¢ — oo,
the local Nusselt number is given by:

(Rigt [0-33872 + 059649

7R}
X (*‘0—_3_—) +. ..J,
x o
o) < 1 < 0(?—2—),
(GO‘)* [0'45619 + 0-042476

“2)
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¥\ «x a3
0(;2—> < 1 < 0(y_2)
(Go)t [0-45619 + 0-042408
ot \*
_ ¥\ x

It is noted that, as far as the heat transfer is
concerned, natural convection is dominant
already in the intermediate subregion.

4. SMALL ¢

As o — 0, the weli-known limit of the forced-
flow temperature is given by:

(m)~* [ e~ ds,
¢

H(n: 6) ~3 { fixed as o — 0, (43)

o\
1—(;);1, n fixed as ¢ — 0,

where { = o¥n and, it is noted, the thermal
convection is negligible in the velocity boundary
layer, n = O(1), but is the same order as the
thermal diffusion in the outer layer, of order
8/c* in thickness, wherein the velocity is
essentially that of the uniform stream.

In a straightforward manner, the buoyancy-
induced stream-function in the outer layer is

expressible as
Fin;0) ~a ' f1({), (fixedasc—>0  (44)

where, denoting the outer temperature distribu-
tion in (43) as hy({),

% i’-%frl = _%gjhodc —%Cho,

S1(0) =0 =7£,(0).

That is, viscous diffusion is negligible in the outer
layer, the horizontal momentum balance being
between the inertial effect and the buoyancy-

(45)

induced pressure gradient. It is noted that u,
is now 0(cU ,/a?).

The solution to (45) is expressible in closed-
form as

f10) =1 —erfc ({/2) + (m)" 3L e ¥

—3%erfc((/2).  (46)
Hence, in particular, f,(o0) = L and f(0) = 2/xn?,
the latter indicating the necessity for a viscous
inner layer in order to satisfy the non-slip
condition at the surface.

An appropriate expansion for F; in the inner
layer is

Fin;0)~a ¥F (), nfixedasoe >0, (47)
where &, is governed by:
F' +SFoF| - SFoF, + FoF,

- - %:f hodZ, + (48)

Z10) =0 =#1(0), Fi(o0) = f1(0).

The right-hand side of (48), arising from the
buoyancy effect in the outer layer, represents a
favorable pressure gradient which is imposed
upon the inner layer. Numerical integration
results in:

F(0) = 1:5285,

2
9’1(’1)~F11+1-4677 asn — o0,  (49)

Concerning the temperature field, it follows

that, in the outer layer,

H,(n;0) ~ 6™ *h,((), (fixedaso — 0,

where

(50)
hi + %Chlx - %hx = — hyfy, } (51)
hy(o0) = 0 = h,(0).

A closed-form solution is given by:
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1 -2 ]
m° - %C}
erfc? ( C)

1 2
+ 5ge ¢4
2nt
Hence, in particular, h,(0) = —%.
In the inner layer, an appropriate expansion
is now

MO = [ s i?e e -

xerf() 1

\~=

e %2

(52)

Hi(n;0) ~ #,(n), nfixedaso—>0, (53)
where
”I’ =
1(n) } (54)
H#1(0) =0, H ()= Hh(0),

ie. the thermal convection is negligible. It
follows that

Hm)=—3 (55)

In the far region, as was shown by Rotem and
Claassen [7], the natural-convection flow con-
sists of an inviscid outer thermal boundary layer,
corresponding to 7 = O(c™%), and a viscous
inner layer, corresponding to # = 0(c ), where-
in thermal convection is negligible and the flow
is driven by an imposed favorable pressure
gradient arising from the buoyancy effect in the
outer layer.

Appropriate asymptotic expansions for (6)
are given in the outer layer by:

¥~ Usaso'_%[fo(Z)
+ o'*?;fl(f) + ],

fixed
rorath | [weoo
+o*eh, (D) + ..,
and, in the inner layer, by:
U~ Ugdpo™ ™ [Fo(&)
+ ot F O +..], Z fixed
T — T, ~ AT[# &) asg—0 O

+ovi# O +..]

¥t - 4

Hence, in both layers, up = O(Uz/c*) and
up = 0(U ). 3

Rotem and Claassen determined f,, h, %
and ¥, whereas, concerning the first-order

mants nti~nm tareac AV Arminog are TANe

PCL L u1 bd WO WL LD, th EU AA% llllls C\.l‘ud L1ULDD lll
the outer layer are

+ 4
h,d
%Hﬁﬁ =0,
fio) =1,

LA
m|N

=1
=75

Fye—

Ry + 3o, + fohy +
£1(0) = 0 = h,(0) = hy(),
and, in the inner layer,

FU 4 3T - AFF + 1FF )

~ L~ (59
#1® = 59

7.0 =
Fi(0) = [1(0),

= ZF/(0) = #,(0),
H/(0) = Ry (0).

Previously-obtained numerical solutions
(slightly corrected) by Rotem and Claassen
show that

folo0) = 1-8009, f(0) = 1-5774,
hy(0) = —0:57574, F(0) = 1-2309,
H(#;6) ~1—-0-57574¢*& (€ fixed as 6—0). J

(60)

whereas numerical integration of (58) and (59)
gives:
FiQ~T—-2657as - o0,
f1(0)y = —02045, k,(0) = —0-07692,
F0) = —01790, H#(&) = —007692¢.
In summary, the above resuits for small ¢
show that, in both the inner and outer layers of
the near region, up is 0(cU ,/o?) and u, is O(U ).
Therefore, the above perturbation expansion
about the forced flow breaks down where
g/at = 0(1), ie. x/A = O(a/y?). Also, in order
that the boundary layer in the near region be

(61)
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thin, it is necessary that x/(cR)* < O(x) ie.
x/A > O(c™!). Hence, as o — 0, the near region
corresponds to where

0(1/0) < 7 < O(a/?). (©2)
Clearly, in order that such a region occur, it is
required that y < 0{o).

On the other hand, the perturbation expansion
about the natural-convection flow indicates that,
in both layers of the far region, uy is O(Uz/c?)
and 1 is O(U ). Hence, in order that uy < O(up),
it is necessary that U, < OUp/o?), ie.
0(c/y?) < x/A. Also, in order that the boundary
layer in this region be thin, it is required that
x/(Go?)t < O(x)or,equivalently, x/2 > Oy 3o~ %).

C. A. HIEBER

dominated boundary layer. The intermediate
region therefore corresponds to x/4 = O(a/y?).

Based upon the results of this section, it
follows that, in the limit y < O(¢) as ¢ — O, the
local Nusselt number is given by:

. s s
(GRP [~ % 4+ i—(g) + :l,

1 X G

(6*G)} [0-57574 + 0:07692

(2N 1] of%) <
'yzR PN X yz I

N ~< (64)

1.0

8
N
RVZ

4

2k

0 | | ]

10 102 103 104 10°
RV2s (x/2)"/2

Fi1G, 2. Variation of N/R* vs. R* at ¢ = 0-72 and various values of y

It is seen that this latter constraint is less restrict-
ive than the former since if y < O(¢) then
0(a/y?) > O(y " *o~*). Hence, in the limit y < 0(c)
as ¢ — 0, the far region occurs where
X

0a/y?) < T (63)

That is, provided y < 0(o) as ¢ — 0, the flow
in the near region defined by (62) is a forced-
flow-dominated boundary layer and, in the far
region defined by (63), the flow is a buoyancy-

5. DISCUSSION

As an application of the heat-transfer results
presented in section 2, Fig. 2 shows the variation
in the local Nusselt number along the plate for
g = 072 and various values of y; the dashed
curves are based upon the first two terms of the
near- and far-region results in (11), whereas the
solid curves are based upon the dashed curve
for p(x) shown in Fig. 1. Figure 2 applies, e.g. to
air at ~20°C, for which y ~ 0-5 AT/UY if AT
is in °C and U, in cm/s. Hence, if AT = 20°C
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and U, = 20 cm/s then y ~ 1073 and, based on
Fig. 2, the buoyancy effect does not become
significant until R* ~ 103, a regime in which the
assumption of laminar flow is somewhat un-
tenable, turbulent transition occurring at R~ 10°
for the purely forced-flow situation. (The corres-
ponding value for the mixed-convection problem
is presumably smaller since the buoyancy gives
rise to an inflection point in the velocity profile
which, according to hydrodynamic stability
theory, tends to lead to a less stable flow.)

section 3, Fig. 3 shows the variation of the local
Nusselt number along the plate for ¢ = 10
and various values of y. The dashed curves are
based upon the results obtained for the near
region, intermediate subregion and far region
(equation 42), the solid curve being drawn in via
graphical interpolation. This figure is applicable,
eg. to light oil at =&15°C, for which
y = 05 AT/U3. Hence, if AT = 20°C and
U, = 10 cm/s then y ~ 10”2 and, based upon
Fig. 3 (discounting the large viscosity variation

12

103 04 108

RYZ = (x/2)'/2

FIG. 3. Variation of N/R* vs. R* at 6 = 1000 and various values of y. Based on equation (42).

However, halving U, to 10 cm/s results in
y ~ 1072 and, according to Fig. 2, the natural
convection now becomes important where
R* ~ 107, i.e. during the early development of the
laminar boundary layer. This clearly demon-
strates that decreasing U, while keeping all
other quantities fixed causes the buoyancy-
dominated region to move rapidly forward
towards the leading edge, the value of R in the
intermediate region being, in fact, proportional
to US.

Based upon the large-o results obtained in

which would attend such a AT), the buoyancy
effect does not become important until R* x~ 10%,
indicating that turbulent-transition of the forced-
flow boundary layer would occur before the
natural convection became significant. Com-
parison with the above results in air clearly
indicates that, for given AT and U, the effect
of buoyancy is much larger in air than in light
oil or, more generally, in gases than in large-o
liquids.

As an application of the small-o results
obtained in section 4, Fig. 4 shows the variation
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in the local Nusselt number along the plate for
g = 1072 and various values of y. The dashed
curves are based upon the results obtained for
the near and far regions (equation 64), the solid
curves being drawn in via graphical interpola-
tion. This figure is applicable, e.g. to liquid
sodium at & 100°C, for which y ~ 0-002 AT/U3.
Hence, if AT = 20°C and U, = 10 cm/s then
y ~ 4x107° and, based upon Fig. 4, the

C. A. HIEBER

at a fixed R and G, the effect of buoyancy
decreases monotonically as ¢ increases.

The latter property is a fundamental character-
istic of mixed convection and is due to the fact
that the temperature field contracts as ¢ increases
(thereby reducing the region over which the
buoyancy acts). This characteristic was noted
by Sparrow and Minkowycz [4] in their
numerical calculations for the near region and

IA

A9

04+

.02}

103 104 10°

RYZ3 (x/\)V2

FIG. 4. Variation of N/R* vs. R* at ¢ = 0-01 and various values of y. Based on equation (64).

buoyancy effect does not become important
until R* ~ 3000, indicating that turbulent transi-
tion of the forced-flow boundary layer would
occur before the natural convection became
significant. Comparison with the above results
in air indicates that, for given AT and U, the
effect of buoyancy is much larger in air than in
liquid sodium or, more generally, in gases than
in liquid metals. This result, which can be
attributed to the relatively small kinematic
viscosity and coefficient of thermal expansion of
liquid metals, is somewhat unexpected since,

can be seen most readily from the present
analysis by noting that the buoyancy-induced
velocity in the near region is of order ¢U 07!
as g > oo but of order sU_ 0 % as o —0.
Alternatively, this o-dependence is shown in
Fig. 5 in terms of the heat-transfer results
obtained in sections 2-4. The “forced-convection
regime” (“natural-convection regime”) is that
in which the local heat transfer due to the forced
flow (buoyancy) is at least ten times as large as
that due to the buoyancy (forced flow). Con-
cerning the upper bound of the forced-convec-
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tion regime, it is seen that the results of Sparrow
and Minkowycz merge well with the large- and
small-o results of the present paper. The lower
bound of the natural-convection regime has
been sketched in on the basis of the large- and
small-o asymptotes of sections 3 and 4, together
with the particular result at ¢ = 0-72 obtained
in section 2.

In applying Fig. 5 to particular instances, it is
cautioned that the indicated constraint on y be
checked in order to assure that a forced-flow-
dominated boundary-layer region is indeed
present. Specifically, since d,, characterizes the
thickness of the boundary layer when o < 0(1),
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until R* = 177; therefore, since yR* ~ 0-017
at ¢ =001 on the lower curve of Fig §, it
follows that it is necessary that y < 0-017/177 =~
10™* in order that there exist a forced-flow-
dominated boundary-layer region when ¢ =0-01.
(This indicates that the lower asymptotic be-
havior of the y = 1072 curve in Fig. 4 is question-
able)) Similarly, at ¢ = 0-72 it is necessary that
y < 0:002. For large o, since the thickness of the
boundary layer is not characterized by 4, but
rather by the displacement thickness, 5*, it is
required that 6*/x < 0-1, say. Application of
this to the forced-flow boundary layer
(6* ~ 1-72 x/R?) indicates that, as g — 0, the

REGIME

NATURAL -CONVECTION

10°
wa_ G
rRa—m
SMALL-o
o'l LMIT
FORCED - CONVECTION
REGIME
|0-21 I ] 1
10-2 107 10° 10 102
o

FiG. S. The forced-convection and natural-convection heat-

transfer regimes in terms of yR* and ¢. Numerical solutions:

“{”, Sparrow and Minkowycz [4]; “["]", section 2; large-o
limit, section 3; small-¢ limit, section 4.

for this case a simple requirement for the existence
of a boundary layer is that §,/x < 01, say.
Applying this to be forced-flow boundary layer
gives R* > 1770 ¢7% as ¢ —» 0 and R* > 338
when ¢ = 0-72. Hence, eg. if 6 = 0-01 then a
forced-flow boundary layer does not develop

two-layer structure does not develop until
R* 2 172, Hence, noting that yR* ~ 13 at
o = 10? on the lower curve in Fig. 5, it follows
that it is necessary that y < 1-3/172 =~ 01 in
order that there exist a forced-flow-dominated
boundary-layer region when ¢ = 100.
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CONVECTION MIXTE AU DESSUS D’UNE SURFACE CHAUFFEE HORIZONTALE
Résumé—Des effets d'Archiméde sont déterminés analytiquement pour la région de la couche limite
laminaire au-dessus d’une surface horizontale semi-infinie chauffée isothermiquement et placée dans un
écoulement uniforme horizontal. On a déterminé les conditions de I'écoulement pour lesquelies la couche
limite consiste en une région proche dominée par Iécoulement forcé et une région éloignée dominée par
Peffet d’Archiméde, séparées par une région intermédiaire ot les convections forcée et naturelle sont
dimportance comparable. On a obtenu les développements de la perturbation pour les régions proche
et éloignée ainsi que des résultats, pour la région intermédiaire, obtenus par interpolation graphique.

Bien que I'on sache que pour des nombres fixés de Reynolds et de Grashof, I'effet d’Archiméde décroit
de fagon monotone quand le nombre de Prandtl augmente, on a trouvé dans le présent probléme que pour
U, et AT fixés, Peffet de convection naturelle est plus important dans les gaz que dans les huiles 3 grand
o ainsi que dans les métaux liquides & petit g; ceci est di 4 la viscosité cinématique relativement petite et
au coefficient de dilatation thermique des métaux liquides. En tout cas, si AT < 20°C, U, doit alors
étre tout 2 fait petit (< 20 cm/s) si les effets d’Archiméde doivent devenir significatifs avant que ne se pro-

duise la transition turbulente.

La présentation des résultats théoriques, G/R>? en fonction de ¢, conduit & une démarcation claire
entre les régimes de transfert thermique par convection forcée, par convection mixte et par convection
naturelle.

MISCHKONVEKTION UBER EINER BEHEIZTEN HORIZONTALEN OBERFLACHE

Zusammenfassung—Auftriebseffekte wurden analytisch bestimmt fiir den laminaren Grenzschichtbereich
{iber einer isotherm beheizten halbunendlichen horizontalen Oberfliche, die in einer horizontalen gleich-

maéssigen Strémung liegt.

Die Strémungsbedingungen wurden bestimmt, fiir welche die Grenzschicht in einen wandnahen
erzwungenen Konvektionsbereich und einen entfernteren freien Konvektionsbereich eingeteilt werden
kann; dazwischen liegt ein Gebiet, in dem erzwungene und natiirliche Konvektion von vergleichbarer
GrbBe sind. Stdrungsexpansionen erhilt man fiir dic nahen und fernen Gebiete mit den Ergebnissen fiir
das dazwischenliegende Gebiet durch graphische Interpolation. Obwohl bekannt ist, dass bei festen
Re- und Gr-Zahlen der Aufiriebseffekt in gleichem Masse abnimmt wie die Prandtl-Zahl ansteigt, wurde
fiir das vorliegende Problem gefunden, dass fiir feste U und AT der Einfluss der natiirlichen Konvektion
in Gasen nicht nur bedeutender als in Olen mit groBem Pr ist, sondern auch in Fliissigkeiten mit kleinem Pr,
Das ist zuriickzufiihren auf die relativ kleine kinematische Zihigkeit und die thermischen Ausdehnungs-
koeffizienten fliissiger Metalle. Fiir AT < 20°C muB U, klein sein (< 20 cm/s), wenn Auftriebeseffekte
bedeutend werden sollen, ehe turbulenter Uberschlag auftritt. Die Darstellung der theoretischen Ergeb-
nisse in Gliedern von G/R*? gegen Pr fiihrt zu einer klaren Abgrenzung zwischen erzwungener, gemischter

iind natiirlicher Konvektion.
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MEITAHHAA KOHBERUUA HAJ HATPETON I'OPU30OHTAJILHON
NMMOBEPXHOCTBIO

ABHOTAUMA~—AHAIUTHYECKH PACCUNTHIBAJIACH CHJA IIIaByuecT B o6jacTH JaMuHAPHOTO
TMOTPAHUYHOTO CIOA HAX HMB0TEPMHYECKH HArperolt NOAYOTpaHUYEHHOH TOPUBOHTANBHON
HOBEPXHOCTHIO B TODH3OHTANILHOM ONHOPOAHOM noToKe. OnpepensAnuce YCHOBHA, NPH
KOTOPHIX HOTPAHUYHBIR CJ10#t COCTOUT M3 OJIMMHEr0o y4acTHa ¢ Npeobnafgalomium BLIHY-
HeHHBIM TOTOKOM U JAaNbHEr0 C© JOMMHUDYIOIIeH CHJIONH IIaByYecTH, MexAy HKOTOPEIMU
HAXONUTCA NMPOMEKYTOUHAA 30HA, T7le BHHYHIACHHAS U eCTeCTBeHHAA KOHBEKLNA CPABHUME,
Ifo Teopuu BO3MYIIEHNH TOJYUYEHBI Pa3NOMeHUd [JIA OIMKHEro U JaJbHEr0 yYACTKOB,
TIpUYeM peayIbTaTH 1A IPOMernyTOURON 30Hb oY YeHsl Ty TeM rpadudecKkolt URTEPIONALNH .

XoTa XOpOIIO UBBECTHO, YTO NpU (UKCUPOBAHHHIX 3HaueHmsaX uncen Pelfinonbaca u
Tpacroda sddperT nraBydecTH MOHOTOHHO YMEHBUIAETCHA ¢ yBeauuenmem umcyua Ilpaspras,
YTO A HAHHON 3a7a4H, TO ecTh ANA QUKCHpOBAHHMX 3HaueHmit U, u AT, piMaHue ecrecT-
BeHHOI KOHBEKIMM 0oJiee 3HAYNTENHHO B rasaX He TOJBKO 1O CPABHEHMIO C MACI4MH Npu
GoAbLUINX 3HAYEHMAX 0, HO TAKMAKE ¥ C HUJKOCTAMM NPH MAJLIX 3HAYEHUAX ¢. OTO 0GBACHACTCA
CPABHUTEJILHO HEOOJNBIIMMH KMUHEMATHYeCKOM BABKOCTHIO M  KODPYUIMEHTOM TEIIOBOrO
paclupenus KUIKUX MeTaiutoB. B mobom ciydae, ecan AT < 200C, Bemnunna U, nomxna
OBITH COBCeM HeGOMBINON, YTOOH CHMIH NIABYHECTH CTANN IHAUMTENBLHBIME A0 HACTYNJIEHHA
TypOyausayuy nNoToOKa.

TeopeTuueCKne peayJabTaTsl, NpPECTABIGHHBE B BUAE 3aBucuMoctH G/E%? or g, BeuyT
K YETKOMY pA3TpaHMYEHHIO PEMUMOB Temioo0MeHna ¢ BHHYMICHHON, CMeAaHHOd U

€CTeCTBeHHON KOHBEKIINEH.
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